4,432 research outputs found

    Uncertainty Quantification for Linear Hyperbolic Equations with Stochastic Process or Random Field Coefficients

    Get PDF
    In this paper hyperbolic partial differential equations with random coefficients are discussed. Such random partial differential equations appear for instance in traffic flow problems as well as in many physical processes in random media. Two types of models are presented: The first has a time-dependent coefficient modeled by the Ornstein--Uhlenbeck process. The second has a random field coefficient with a given covariance in space. For the former a formula for the exact solution in terms of moments is derived. In both cases stable numerical schemes are introduced to solve these random partial differential equations. Simulation results including convergence studies conclude the theoretical findings

    Stochastic Partial Differential Equations : Approximations and Applications

    Get PDF
    For many people the behaviour of stock prices may appear to be unpredictable. The price dynamics seem to exhibit no regularity. Although it might be hard to believe, mathematicians and physisists have managed to explain this behaviour via functions whose characteristics match those of the observed phenomena. In mathematics we model such curves with stochastic equations (driven by stochastic processes). They describe chaotic behaviour and can be used to produce computer simulations. The (standard) theory is quite well known and established. However, when one studies more complex financial markets and products, the complexity of the stochastic equations increases considerably. As an extension to the text-book theory, one could devise models in more than one dimension. Eventually this would lead to the notion of stochastic equations taking values in some function space (stochastic partial differential equations) or random fields. The simulation of stochastic partial differential equations is the main contribution of this work. We show convergence of discretizations as the simulation becomes more precise. We introduce as well possible applications like forward pricing in energy markets, or hedging against weather risk due to temperature uncertainty. A Finite Element Method is used for the discretization. This is a well established numerical method for deterministic problems. When we deal with stochastic equations, however, the world is not smooth and thus the problems become more daunting. In this work we introduce Finite Element Methods for stochastic partial differntial equations driven by different noise processes

    Milstein Approximation for Advection-Diffusion Equations Driven by Multiplicative Noncontinuous Martingale Noises

    Get PDF
    In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived inL 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler-Maruyama approximation. Finally, simulations complete the pape

    Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients

    Full text link
    Subsurface flows are commonly modeled by advection-diffusion equations. Insufficient measurements or uncertain material procurement may be accounted for by random coefficients. To represent, for example, transitions in heterogeneous media, the parameters of the equation are spatially discontinuous. Specifically, a scenario with coupled advection- and diffusion coefficients that are modeled as sums of continuous random fields and discontinuous jump components are considered. For the numerical approximation of the solution, an adaptive, pathwise discretization scheme based on a Finite Element approach is introduced. To stabilize the numerical approximation and accelerate convergence, the discrete space-time grid is chosen with respect to the varying discontinuities in each sample of the coefficients, leading to a stochastic formulation of the Galerkin projection and the Finite Element basis

    Multilevel Monte Carlo estimators for elliptic PDEs with L\'evy-type diffusion coefficient

    Full text link
    General elliptic equations with spatially discontinuous diffusion coefficients may be used as a simplified model for subsurface flow in heterogeneous or fractured porous media. In such a model, data sparsity and measurement errors are often taken into account by a randomization of the diffusion coefficient of the elliptic equation which reveals the necessity of the construction of flexible, spatially discontinuous random fields. Subordinated Gaussian random fields are random functions on higher dimensional parameter domains with discontinuous sample paths and great distributional flexibility. In the present work, we consider a random elliptic partial differential equation (PDE) where the discontinuous subordinated Gaussian random fields occur in the diffusion coefficient. Problem specific multilevel Monte Carlo (MLMC) Finite Element methods are constructed to approximate the mean of the solution to the random elliptic PDE. We prove a-priori convergence of a standard MLMC estimator and a modified MLMC - Control Variate estimator and validate our results in various numerical examples

    On properties and applications of Gaussian subordinated L\'evy fields

    Full text link
    We consider Gaussian subordinated L\'evy fields (GSLFs) that arise by subordinating L\'evy processes with positive transformations of Gaussian random fields on some spatial domain D⊂Rd\mathcal{D}\subset \mathbb{R}^d, d≥1d\geq 1. The resulting random fields are distributionally flexible and have in general discontinuous sample paths. Theoretical investigations of the random fields include pointwise distributions, possible approximations and their covariance function. As an application, a random elliptic PDE is considered, where the constructed random fields occur in the diffusion coefficient. Further, we present various numerical examples to illustrate our theoretical findings
    • …
    corecore